Exercise 3

In Exercises 1-4, show that the given function $u(x)$ is a solution of the corresponding Fredholm integral equation:

$$
u(x)=x+\int_{-1}^{1}\left(x^{4}-t^{4}\right) u(t) d t,-1 \leq x \leq 1, u(x)=x
$$

Solution

Substitute the function in question on both sides of the integral equation.

$$
x \stackrel{?}{=} x+\int_{-1}^{1}\left(x^{4}-t^{4}\right) t d t
$$

Subtract x from both sides.

$$
\begin{aligned}
0 & \stackrel{?}{=} \int_{-1}^{1}\left(x^{4}-t^{4}\right) t d t \\
& \stackrel{?}{=} \int_{-1}^{1}\left(x^{4} t-t^{5}\right) d t \\
& \stackrel{?}{=} \int_{-1}^{1} x^{4} t d t-\int_{-1}^{1} t^{5} d t
\end{aligned}
$$

x^{4} doesn't depend on t, so it can be brought in front of the integral.

$$
\begin{aligned}
& \stackrel{?}{=} x^{4} \int_{-1}^{1} t d t-\int_{-1}^{1} t^{5} d t \\
& \left.\stackrel{?}{=} x^{4} \cdot \frac{t^{2}}{2}\right|_{-1} ^{1}-\left.\frac{t^{6}}{6}\right|_{-1} ^{1} \\
& \stackrel{?}{=} x^{4}\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{6}-\frac{1}{6}\right) \\
& =0
\end{aligned}
$$

Therefore,

$$
u(x)=x
$$

is a solution to the Fredholm integral equation.

